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What is entanglement entropy?

Entanglement entropy is a measure of quantum entanglement
between two complementary sub-systems.
It can be defined for any quantum system that can be partitioned, in
any state ρ.

H = HA ⊗HB
Define the reduced density matrix ρA = TrBρ.
The entanglement entropy is the von Neumann entropy of ρA:

SEE = −TrρA log ρA
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Holographic entanglement entropy
Entanglement entropy can be calculated holographically via the
Ryu-Takayanagi prescription.

Bρ = 0

A∂A

t = const.

QFTd

AlAdSd+1

SA = 1
4G

∫
Σ

dd−1σ
√
γ, γab = gµν(X(σ))∂aXµ(σ)∂bXν(σ)
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Significance of entanglement entropy

Does the EE capture global structure in the dual spacetime?
What part of the bulk is reconstructable from a given boundary
region?
Related to the mutual information.
Non-local order parameter for topological phase transitions.
Possibly related to the a quantity in odd d, and F quantity in even d.

The entanglement entropy is UV divergent!
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Divergences

Area-law divergence (d > 2):

SA = γ

εd−1 Area(∂A) + . . .

For a QFT in even dimensions d = 1 +D, the ground state EE
contains universal terms

SA ∼ (−1)
d
2−1

a log
(
R

ε

)
where R is a characteristic scale of A, ε is a UV cutoff, and a is the
a-theorem quantity.
For odd d, finite terms

SA ∼ (−1)
d−1

2 a

are conjectured to be related to the F theorem, but are scheme
dependent.
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Renormalization attempts

Näıve subtraction (!)
Differentiation with respect to parameters. (Cardy and Calabrese)
Geometry dependence: e.g. in d = 4 with ∂A sphere of radius R
then use

SR = R
∂S

∂R
− 2S

(Liu and Mezei)
No definition for generic shape of ∂A.
SR is not finite for non-CFTs, even relevantly deformed CFTs.
Scheme dependence is obscure.
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Natural holographic renormalization scheme

There is a natural method of renormalizing quantities in holography.

Bρ = 0

A∂Σ = ∂A

Σ

t = const.

QFTd

ρ

AlAdSd+1

Use the cutoff ρ = ε to define a renormalized volume using appropriate
covariant counter terms.
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Natural holographic renormalization scheme

There is a natural method of renormalizing quantities in holography.

ρ = ε

Bρ = 0

A∂Σ = ∂A

∂Σε

Σε

t = const.

QFTd

ρ

AlAdSd+1

Use the cutoff ρ = ε to define a renormalized volume using appropriate
covariant counter terms.
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Holographic renormalization: Overview

1 Solve for the bulk fields.
2 Regulate the “bare” Ryu-Takayanagi functional:

SEE = 1
4GN

∫
Σ

dd−1σ
√
γ −→ SEE,ε = 1

4GN

∫
Σε

dd−1σ
√
γ

and expand SEE,ε as a power series in ε.

SEE,ε =
S(0)

εd−1 + . . .

3 Find covariant counter terms on ∂Σε to remove the divergences

Sct ∼
∫
∂Σε

dd−2σ
√
γ̃L(R,K)

4 The renormalized entanglement entropy is then given by

Sren = lim
ε→0

SEE,ε + Sct
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Holographic renormalization: Step 1

For example, in an AdSD+2 bulk:
1 Calculate the bulk fields near boundary expansions in

Fefferman-Graham coordinates.

ds2 = dρ2

4ρ2 +1
ρ
ηijdxidxj , Xµ(σ) = (ρ(σ), t, x1(σ), . . . , xD−1(σ), y(σ))

2 Gauge fix the minimal surface coordinates σa = (ρ, x1, . . . , xD−1).
3 Solve the minimal surface equation for y(ρ, x) as a series expansion

in ρ:
y(ρ, x) = y(0)(x) + ρ y(1)(x) +O(ρ2)

y(1)(x) = 1
2(D − 1)

y(0)
,AA −

y
(0)
,A y

(0)
,ABy

(0)
,B

1 + y
(0)
,C

2


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Holographic renormalization: Step 2

Series expand SEE,ε:

SEE,ε = 1
4GN

∫
∂Σε

dD−1x (1 + y
(0)
,C

2
)
1/2
×ε−(D−1)/2

D − 1 + ε−(D−3)/2

D − 3
y

(0)
,A y

(1)
,A + 2y(1)2

1 + y
(0)
,B

2 + . . .



William Woodhead Renormalized entanglement entropy



14/23

Holographic renormalization: Step 3
Find scalars defined on ∂Σε that cancel divergences, starting with the
highest order divegences.

The volume form on ∂Σε,
√
γ̃ is given by

√
γ̃ = ε−(D−1)/2(1 + y

(0)
,C

2
)
1/2
1 + ε

y
(0)
,A y

(0)
,A

1 + y
(0)
,C

2 + . . .


This is sufficient for the first counter term:

Sct,1 = − 1
4GN

1
D − 1

∫
∂Σε

dD−1x
√
γ̃

The trace of the extrinsic curvature is given by

K = 2(D − 1)ε1/2 y(1)

(1 + y
(0)
,C

2
)
2 + . . .

This gives us the second counter term:

Sct,2 = − 1
4GN

(D − 2)
2(D − 1)3(D − 3)

∫
∂Σε

dD−1x
√
γ̃K2
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Holographic renormalization — Finite counter terms

This method makes it very easy to find finite counter terms.
The exists at least one such term for all D:∫

∂Σε

dD−1x
√
γ̃KD−1

Higher dimensions allows a range of other finite counter temrs, all
constructed from the curvature invariants, for example:∫

∂Σε

dD−1x
√
γ̃(KABKAB)(D−1)/2

∫
∂Σε

dD−1x
√
γ̃R(D−1)/2

are finite for odd D.
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3D CFT vacuum state

The renormalised action for the entangling surface in AdS4 is:

Sren = 1
4GN

∫
Σ

d2σ
√
γ − 1

4GN

∫
∂Σ

dσ
√
γ̃ (1− csK)

Here K is the extrinsic curvature of the boundary curve (into the
cut-off surface).
This term is finite =⇒ scheme dependence.

William Woodhead Renormalized entanglement entropy



18/23

Examples

Half-plane
SEE = 0

Infinitely long strip of width R:

sEE = − π
2√2

3G4R

Γ(7/4)
Γ(1/4)2Γ(5/4)

K = 0 so no scheme dependence.
Disc of radius R

SEE = π

2G4
(as − 1)

as measures scheme dependence.
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Extension to RG flows

We can extend this framework to model RG flows.
The bulk geometry is a domain wall

ds2 = dρ2

4ρ2 + e2A(ρ)dxidxi

with some scalar fields φA(ρ).
Counter terms can and do depend on φA:

Sct ∼
∫
∂Σε

dd−2σ
√
γ̃L(R,K, φA,∇φA, . . .)

Explains why previous attempts fail to handle relevant deformations.
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3D RG flows

Four dimensional bulk, d = 3, single scalar φ with square mass
m2 = 3(3−∆). We assume a relevant deformation: ∆ < 3.

For ∆ > 5/2:

Sct = − 1
4GN

∫
∂Σ

dσ
√
γ̃

(
1− csK + (3−∆)

8(5− 2∆)φ
2 + . . .

)
For ∆ = 5/2 this last term becomes anomalous:

Sct,log = − 1
128GN

∫
∂Σ

dσ
√
γ̃φ2 log ε

Conformal anomalies were found ∆ = d
2 + 1 in general d, (e.g.

Rosenhaus & Smolkin; Jones & Taylor).
We find anomalies whenever ∆ = 6n−1

2n in d = 3.
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Change under relevant deformations

Consider the change in the vacuum disc entanglment entropy due to
a small relevant perturbation with dimension ∆.
The leading order change in the renormalized entanglement entropy
is at O(φ2

(0)) and given by

δSren = π

16(2∆− 5)G4
φ2

(0)R
2(3−∆) + . . .

This is positive if ∆ > 5
2 and negative if ∆ < 5

2 .
This suggests that the renromalized entanglement entropy is not a
good F -quantity (work in progress. . . )
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Summary and Outlook

Proposed a renormalization of the holographic entanglement entropy
using holographic renormalization.

Our method uses Fefferman-Graham expansions. Can we reformulate
this in the dilatation expansion formalism?

Scheme works for any type of boundary region, bulk manifold,
spacetime dimensions. . .
Showed that this is explicitly finite, and accounts for scheme
dependence.

All known values seem to be negative. What does this mean?
Can we fix the scheme dependence on general grounds?

Renormalized EE can depend explicitly on any matter fields.
Explains why previous attempts failed to handle non-CFT states.
Why is renormalization incompatible with the CHM map?
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